this post was submitted on 26 Jan 2026
517 points (98.9% liked)

Science Memes

18599 readers
1436 users here now

Welcome to c/science_memes @ Mander.xyz!

A place for majestic STEMLORD peacocking, as well as memes about the realities of working in a lab.



Rules

  1. Don't throw mud. Behave like an intellectual and remember the human.
  2. Keep it rooted (on topic).
  3. No spam.
  4. Infographics welcome, get schooled.

This is a science community. We use the Dawkins definition of meme.



Research Committee

Other Mander Communities

Science and Research

Biology and Life Sciences

Physical Sciences

Humanities and Social Sciences

Practical and Applied Sciences

Memes

Miscellaneous

founded 3 years ago
MODERATORS
 
you are viewing a single comment's thread
view the rest of the comments
[–] bunchberry@lemmy.world 2 points 1 week ago* (last edited 1 week ago) (1 children)
  1. Entanglement is just a mathematical property of the theory. If it is sufficient to explain measurement then there is not anything particularly unique about MWI since you can employ this explanation within anything. You also say I missed your point by repeating exactly what I said.
  2. You're the one giving this bullet point list as if you are debunking all of my points one-by-one. If you agree there is nothing especially "more local" about MWI than any other interpretation then why not just ignore that point and move on?
  3. A relative state is not an entangled state. Again you need to read the papers I linked. We are talking about observer-dependence in the sense of how the velocity of a train in Galilean relativity can be said to have a different value simultaneously for two different observers. I drew the direct comparison here in order to explain that in my first comment. This isn't about special relativity or general relativity, but about "relativity" in a more abstract sense of things which are only meaningfully defined as a relational property between systems. The quantum state observer A assigns to a system can be different from the quantum state observer B assigns to the system (see the Wigner's friend thought experiment). The quantum state in quantum mechanics is clearly relative in this sense, and to claim there is a universal quantum state requires an additional leap which is never mathematically justified.
  4. Please for the love of god just scroll up and read what I actually wrote in that first post and respond to it. Or don't. You clearly seem to be entirely uninterested in a serious conversation. I assume you have an emotional attachment to MWI without even having read Everett's papers and getting too defensive that you refuse to engage seriously in anything I say, so I am ending this conversation here. You don't even know what a universal wavefunction is despite that being the title of Everett's paper and are trying to lecture me about this subject without even reading a word I have written, claiming that the opinions of the cited academics here are "not even worth taken seriously." This is just an enormous level of arrogance that isn't worth engaging with.
[–] bitcrafter@programming.dev 2 points 1 week ago

I assume you have an emotional attachment to MWI without even having read Everett’s papers and getting too defensive that you refuse to engage seriously in anything I say, so I am ending this conversation here.

Uhh, okay. Like, you were the one who felt the need to go on the attack here, but if you need to stop for your mental health than so be it. 🙂