this post was submitted on 06 Dec 2025
630 points (98.6% liked)

Science Memes

17710 readers
1163 users here now

Welcome to c/science_memes @ Mander.xyz!

A place for majestic STEMLORD peacocking, as well as memes about the realities of working in a lab.



Rules

  1. Don't throw mud. Behave like an intellectual and remember the human.
  2. Keep it rooted (on topic).
  3. No spam.
  4. Infographics welcome, get schooled.

This is a science community. We use the Dawkins definition of meme.



Research Committee

Other Mander Communities

Science and Research

Biology and Life Sciences

Physical Sciences

Humanities and Social Sciences

Practical and Applied Sciences

Memes

Miscellaneous

founded 2 years ago
MODERATORS
 
you are viewing a single comment's thread
view the rest of the comments
[–] TigerAce@lemmy.dbzer0.com 7 points 1 week ago* (last edited 1 week ago) (2 children)

That's looks like a picture of Jupiter, or an artists impression of it, and there's a star needed for an aurora to happen.

Any scientific sources to back this story up?

[–] Midnitte@beehaw.org 16 points 1 week ago

No it is indeed an artists impression of the planet - it's on the wiki page.

I'm assuming that aurora only needs solar wind to happen on earth - or that solar wind outside the heliosphere is strong enough you don't need a star for it to happen.

In 2018 astronomers said "Detecting SIMP J01365663+0933473 with the VLA through its auroral radio emission, also means that we may have a new way of detecting exoplanets, including the elusive rogue ones not orbiting a parent star ...

[–] InappropriateEmote@hexbear.net 12 points 1 week ago (1 children)

The picture is definitely just some artist's conception, but it's not claimed to be a photo or meant to be anything other than what it is, an artist's conception. You're right that for the most part, a star is needed for aurora, at least for the kind of aurora we have on Earth since it depends on the solar wind interacting with the planet's magnetic field. But if there is anything that can be said about what we've discovered astronomically in the last century or so it's that there are always exceptions to every supposed rule.

The authors attribute the auroras to SIMP-0136’s magnetic field being vastly more powerful than Jupiter’s (750 times stronger according to a previous study). Electrons (presumably stripped from atoms by internal processes) would flow with the field and hit atmospheric molecules fast enough to make them glow, they conclude.

Aside from the aurora part though, none of this is exceptional or rare (and maybe even the aurora part isn't rare either). Rogue planets are probably extremely common, possibly even more common than planets that are gravitationally bound in a star system. And objects of this size, which is really around where we'd start calling it a brown dwarf, are also very common, with more of them than there are main sequence stars.