this post was submitted on 06 Dec 2025
629 points (98.6% liked)
Science Memes
17683 readers
1439 users here now
Welcome to c/science_memes @ Mander.xyz!
A place for majestic STEMLORD peacocking, as well as memes about the realities of working in a lab.

Rules
- Don't throw mud. Behave like an intellectual and remember the human.
- Keep it rooted (on topic).
- No spam.
- Infographics welcome, get schooled.
This is a science community. We use the Dawkins definition of meme.
Research Committee
Other Mander Communities
Science and Research
Biology and Life Sciences
- !abiogenesis@mander.xyz
- !animal-behavior@mander.xyz
- !anthropology@mander.xyz
- !arachnology@mander.xyz
- !balconygardening@slrpnk.net
- !biodiversity@mander.xyz
- !biology@mander.xyz
- !biophysics@mander.xyz
- !botany@mander.xyz
- !ecology@mander.xyz
- !entomology@mander.xyz
- !fermentation@mander.xyz
- !herpetology@mander.xyz
- !houseplants@mander.xyz
- !medicine@mander.xyz
- !microscopy@mander.xyz
- !mycology@mander.xyz
- !nudibranchs@mander.xyz
- !nutrition@mander.xyz
- !palaeoecology@mander.xyz
- !palaeontology@mander.xyz
- !photosynthesis@mander.xyz
- !plantid@mander.xyz
- !plants@mander.xyz
- !reptiles and amphibians@mander.xyz
Physical Sciences
- !astronomy@mander.xyz
- !chemistry@mander.xyz
- !earthscience@mander.xyz
- !geography@mander.xyz
- !geospatial@mander.xyz
- !nuclear@mander.xyz
- !physics@mander.xyz
- !quantum-computing@mander.xyz
- !spectroscopy@mander.xyz
Humanities and Social Sciences
Practical and Applied Sciences
- !exercise-and sports-science@mander.xyz
- !gardening@mander.xyz
- !self sufficiency@mander.xyz
- !soilscience@slrpnk.net
- !terrariums@mander.xyz
- !timelapse@mander.xyz
Memes
Miscellaneous
founded 2 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
Both the magnetic field strength and charged particle flux fall off proportional to the square of the distance from the planet / star respectively, so I doubt it gets much of anything even with a strong magnetic field unless it’s also near a star.
I’d also point out that the particles aren’t really attracted by the earths magnetic field, we’re just in the pathway, and the magnetic field funnels them to the poles. It’s more guidance than attraction.
I dont think you're quite understanding how big 6 orders of magnitude is. 4000000/r2 still falls off way slower than 1/r2.
Also the funnel diagram of the earth's magnetic field you're referring to is a near field effect. In the far field regime the only field components that stay strong enough to be relevant are those parallel to the axis of the dipole; a dipole is functionally identical to a bar magnet if you're measuring it from far enough away. If my understanding of solar wind is correct and the aurora refers to an interaction that occurs between the earth's magnetic field and particles near the sun, we're definitely in the far field regime
I don’t think you’re quite understanding the distances involved in what I’m getting at. The particle flux is minuscule, and it’s not the magnetic field that’s attracting particles. It’s only guiding the particles that were already headed towards the planet.
This planet would have great aurorae if it were near a star, but it’s not, so the magnetic field strength is kind of a moot point.
The absolute distance is strictly irrelevant given this is a relative comparison between two magnetic fields. The one that is 6 orders of magnitude higher will maintain that 6 orders of magnitude difference exactly the same at a distance of 100m as it will at a distance of 100au. That means that the stronger field will maintain the minimum strength required to "guide" particles towards the dipole at a greater distance than the weaker magnetic field would. I feel you if you're only trying to argue that it would still need to be within some neighborhood of some star to produce an aurora, but your posts read like you're claiming 6 orders of magnitude on the magnetic field makes no difference on how close that object would need to be to produce an aurora, which is flatly incorrect.
The absolute distance is extremely relevant to how many particles reach the planet, which in turn is extremely relevant to how bright the aurora is.
That is correct. It also has nothing to do with the original claim I made and you disagreed with, which is that the object with the greater magnetic field would be able to attract particles from farther away.
Well, that statement is completely incorrect. The magnetic field doesn’t attract particles, which I stated in my earlier comment. It only guides the particles towards the poles, particles which were already headed towards the planet after being emitted. It does not attract particles (pull, in your words) towards the planet that would otherwise miss it had the magnetic field not existed.
In fact, a stronger magnetic field would be a better shield to deflect particles away from a majority of the planet.
That is a fundamental misunderstanding of how magnetic fields and the forces they induce work. Attract and guide are both words that mean the same thing in this context, ie "apply force to." Not sure what else to tell you; I dont feel like teaching you electrodynamics so I wont reply to this thread again.
You won’t, because you fundamentally misunderstand what’s happening.
No star = no charged particles = no lights. Doesn't matter how big the magnetic field is.
That's all he's saying.