486
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
this post was submitted on 20 Nov 2023
486 points (98.6% liked)
Technology
59081 readers
3022 users here now
This is a most excellent place for technology news and articles.
Our Rules
- Follow the lemmy.world rules.
- Only tech related content.
- Be excellent to each another!
- Mod approved content bots can post up to 10 articles per day.
- Threads asking for personal tech support may be deleted.
- Politics threads may be removed.
- No memes allowed as posts, OK to post as comments.
- Only approved bots from the list below, to ask if your bot can be added please contact us.
- Check for duplicates before posting, duplicates may be removed
Approved Bots
founded 1 year ago
MODERATORS
I'm assuming that doing full charge/discharge cycles on them daily will put more wear on them than every day driving would?
But if your buying them at scrap value and the. Still selling them as scrap after a few more years I guess it works out.
The way lithium batteries work, they wear out less if you only discharge and charge them slightly. So a battery that is charged to 60%, discharged to 40%, and repeated like that will keep most of its capacity even after years of prolonged use. On the other hand, charging a battery quickly, until it is full, or discharging it until it is nearly empty will reduce its capacity over time.
A Tesla Model 3 has a battery capacity of at least 50 kWh. Even if it has lost half of its capacity, the 20% capacity difference between 60% and 40% charge, or more realistically, the 50% difference between 75% and 25%, still represents 12.5 kWh of capacity. Suppose you had an array of 1,000 such batteries. That would represent 12.5 MWh of storage capacity, enough to power ten thousand homes (at 1.2 kW each) for an hour. Certainly nothing to sneeze at.
This flies in the face of everything I thought I knew about charging my phone & laptop
Yea, back in the day, when first phones and laptops were coming out, the tech was different, and was better to fully discharge/charge the battery. Nowadays it's the opposite, but the mith still survives
An easy analogy for batteries nowadays is to see them as an elastic completely relaxed at 50%. At 0% or 100% the elastic would be fully stretched. You want to avoid that to maximize its life