I know I'm bad at math but I don't understand how 2x0=0 but 2^0=1
How are they different answers when they're both essentially multiplying 2 by zero?
Someone with a bigger brain please explain this
Edit: I greatly appreciate all the explanations but all they've done is solidify the fact that I'll never be good at math 😭
subtracting one from Exponent means halving (when the base is two):
2⁴ = 16 2³ = 8 2² = 4 2¹ = 2 2⁰ = 1
It's a simple continuation of the pattern and required for mathemarical rules to work.
This is confidently wrong.
3^0 is also 1. 2738394728^0 is also 1.
Edit: just saw that technically you're correct - sure.
IF base 2, Exponent reduction equals to halving - dividing by 2.
For x^y reducing y by one is equal to dividing by x, then we have the proof it always works.
But that's because for 3 the sequence is dividing by 3 not 2.
81, 27, 9, 3, 1, 1/3, 1/9, etc.
3^4, 3^3, 3^2, 3^1, 3^0, 3^(-1), 3^(-2), etc.
You're not always halving, but the method is the same and it sometimes helps people understand the concept more easily.
I know I'm bad at math but I don't understand how 2x0=0 but 2^0=1
How are they different answers when they're both essentially multiplying 2 by zero?
Someone with a bigger brain please explain this
Edit: I greatly appreciate all the explanations but all they've done is solidify the fact that I'll never be good at math 😭
subtracting one from Exponent means halving (when the base is two):
2⁴ = 16 2³ = 8 2² = 4 2¹ = 2 2⁰ = 1
It's a simple continuation of the pattern and required for mathemarical rules to work.
This is confidently wrong.
3^0 is also 1. 2738394728^0 is also 1.
Edit: just saw that technically you're correct - sure.
IF base 2, Exponent reduction equals to halving - dividing by 2.
For x^y reducing y by one is equal to dividing by x, then we have the proof it always works.
But that's because for 3 the sequence is dividing by 3 not 2.
81, 27, 9, 3, 1, 1/3, 1/9, etc.
3^4, 3^3, 3^2, 3^1, 3^0, 3^(-1), 3^(-2), etc.
You're not always halving, but the method is the same and it sometimes helps people understand the concept more easily.