86
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
this post was submitted on 24 Sep 2023
86 points (82.6% liked)
Asklemmy
43812 readers
890 users here now
A loosely moderated place to ask open-ended questions
Search asklemmy ๐
If your post meets the following criteria, it's welcome here!
- Open-ended question
- Not offensive: at this point, we do not have the bandwidth to moderate overtly political discussions. Assume best intent and be excellent to each other.
- Not regarding using or support for Lemmy: context, see the list of support communities and tools for finding communities below
- Not ad nauseam inducing: please make sure it is a question that would be new to most members
- An actual topic of discussion
Looking for support?
Looking for a community?
- Lemmyverse: community search
- sub.rehab: maps old subreddits to fediverse options, marks official as such
- !lemmy411@lemmy.ca: a community for finding communities
~Icon~ ~by~ ~@Double_A@discuss.tchncs.de~
founded 5 years ago
MODERATORS
Put another way conventional cameras work with cumulative sensors (at least for this conversation we can say they do) which record the total quantity of photons and their intensity being received in each spot. The shutter is the process of closing off light input and recording the data from the sensor. Technically there's an upper limit to how much light cameras can take in, which they'd asymptotically approach I imagine.
Your eyes don't work the same way. Each photodetector cell will send a signal when it reacts with a photon of sufficient energy (wavelength, intensity will increase the probability of reaction if im not mistaken) and send that signal to your brain. There's a lot of other complicated stuff going on, but at the end of the day your photo receptor cells are only so sensitive, and if light is below the threshold that will activate them, you'll mostly just get signal noise. This is true of conventional cameras too, but they are generally just tuned for a different purpose.
Animals with good night vision have highly reflective membranes behind their photo receptors to increase the probability of a photon interacting with a photo receptor, and often have different tuning on their whole eye optical systems that make them more sensitive, but also more likely to burn. There are always tradeoffs.
Would suck to have night vision during the day haha!
Thanks for the info! So a NVG collects the light and then shoots it out again? Or also increases the capture surface?
Night vision goggles usually are very sensitive to visible light yeah. Im not sure on exactly how the optics work but some modern ones are set up more like vr. Some are also sensitive to near infra red, and some see entirely in infra red. The latter are thermal imaging. The longer the wavelength you go (the more red) the more difficult it is to create sensors that receive a good image. You can imagine that putting a thermal eye in a warm blooded animal might be a bit difficult because the eye itself will be emitting light that overpowers the scene.