43

Was thinking about interstellar travel and the ability to provide artificial gravity by using a smooth acceleration and deceleration across the journey, changing from acceleration to deceleration at the halfway mark.

If we ignore relativistic effects, with smooth acceleration of 9.81 ms^-2^, you'd be going 3.1e8 ms^-1^ after the first year (3.2e7 s), if I'm not making a mathematical blunder. That's more than the speed of light at 3.0e8.

My main question, and the one that I initially came here to ask, is: if their ship continues applying the force that, under classical mechanics, was enough to accelerate them at 9.81 ms^-2^, would the people inside still experience Earth-like artificial gravity, even though their velocity as measured by an observer is now increasing at less than that rate?

A second question that I thought of while trying to figure this out myself as I wrote it up, is... My understanding is that a trip taken at the speed of light would actually feel instantaneous to the traveller, while taking distance/speed of light to a stationary observer. In the above scenario, would the final time taken, as measured by the traveller, be the same as if they were to ignore the speed that they are travelling at according to an outside observer, and instead actually assume they are undergoing continuous acceleration?

you are viewing a single comment's thread
view the rest of the comments
[-] cynar@lemmy.world 4 points 7 months ago

A minor nit pick. It's worth noting that increasing mass is an inaccurate view. It works in the simple examples, but can cause confusion down the line.

Instead, an additional term is introduced. This term, while it could be combined with the mass, is actually a vector, not a scalar. It has both value and direction, not just value. This turns your relativistic mass into a vector. Your mass changes, depending on the direction of the force acting on it! Keeping it as a separate vector can improve both calculations and comprehension, since comparable terms appear elsewhere (namely with time dilation and length contraction).

this post was submitted on 12 Mar 2024
43 points (100.0% liked)

Ask Science

8589 readers
1 users here now

Ask a science question, get a science answer.


Community Rules


Rule 1: Be respectful and inclusive.Treat others with respect, and maintain a positive atmosphere.


Rule 2: No harassment, hate speech, bigotry, or trolling.Avoid any form of harassment, hate speech, bigotry, or offensive behavior.


Rule 3: Engage in constructive discussions.Contribute to meaningful and constructive discussions that enhance scientific understanding.


Rule 4: No AI-generated answers.Strictly prohibit the use of AI-generated answers. Providing answers generated by AI systems is not allowed and may result in a ban.


Rule 5: Follow guidelines and moderators' instructions.Adhere to community guidelines and comply with instructions given by moderators.


Rule 6: Use appropriate language and tone.Communicate using suitable language and maintain a professional and respectful tone.


Rule 7: Report violations.Report any violations of the community rules to the moderators for appropriate action.


Rule 8: Foster a continuous learning environment.Encourage a continuous learning environment where members can share knowledge and engage in scientific discussions.


Rule 9: Source required for answers.Provide credible sources for answers. Failure to include a source may result in the removal of the answer to ensure information reliability.


By adhering to these rules, we create a welcoming and informative environment where science-related questions receive accurate and credible answers. Thank you for your cooperation in making the Ask Science community a valuable resource for scientific knowledge.

We retain the discretion to modify the rules as we deem necessary.


founded 1 year ago
MODERATORS