I've been using airoboros-l2-70b for writing fiction, and while overall I'd describe the results as excellent and better than any llama1 model I've used, it doesn't seem to be living up to the promise of 4k token sequence length.
Around 2500 tokens output quality degrades rapidly, and either starts repeating previous text verbatim, or becomes incoherent (grammar, punctuation and capitalization disappear, becomes salad of vaguely related words)
Any other experiences with llama2 and long context? Does the base model work better? Are other fine tunes behaving similarly? I'll try myself eventually, but the 70b models are chunky downloads, and experimentation takes a while at 1 t/s.
(I'm using GGML Q4_K_M on kobold.cpp, with rope scaling off like you're supposed to do with llama2)
You raise an interesting point though in that most examples likely follow exactly as you suggest, there would have to be large amounts of training specifically for focusing on middle content, there probably just isn't enough in the dataset