418
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
this post was submitted on 02 Aug 2023
418 points (96.0% liked)
Technology
59147 readers
2475 users here now
This is a most excellent place for technology news and articles.
Our Rules
- Follow the lemmy.world rules.
- Only tech related content.
- Be excellent to each another!
- Mod approved content bots can post up to 10 articles per day.
- Threads asking for personal tech support may be deleted.
- Politics threads may be removed.
- No memes allowed as posts, OK to post as comments.
- Only approved bots from the list below, to ask if your bot can be added please contact us.
- Check for duplicates before posting, duplicates may be removed
Approved Bots
founded 1 year ago
MODERATORS
I have been doing some thinking and this is game changing but not so much. We won't get hoverboards or flying cars to my knowledge. We will get much cheaper maglev trains, but in America we refuse to build public infrastructure that isn't for cars so that isn't gonna fix it.
We won't get faster traditional computers because those need semi-conductors. There are some patents and theories about superconducting transistors so we may get a "cool running" cpu eventually, but it won't be faster it just won't heat up.
Quantum computers will get cheaper and maybe more available, but they are still a research topic so we are probably decades away from them having practical use (or ever in terms of practical for everyday use, they will break encryption as we know it though).
We will "instantly" save something like 30% of our power generation that is lost to heat, but again that is going to require a massive infrastructure project to replace all high voltage power lines, so that is never going to happen in America.
Brush less motors will be able to be smaller and/or able to take in more energy so they will be more efficient, but we are still beholden to our energy storage density.
There is a theoretical idea of using superconducting rings to let electrons flow around it indefinitely, as an energy storage medium, but I have no idea how close that could be or how dense that would be compared to Lithium Ion batteries, or Fossil fuels which is the real competition.
We will get smaller and cheaper MRI's so medical imaging should get cheaper and more available to the "global south".
Am I missing anything?
More heat efficient processors and more energy efficient processors are one and the same. Which is huge. Energy usage is a large portion of the cost of computational infrastructure, and things like training neural networks. I suspect a thermally more efficient processor would also potentially last much longer too, with less intense thermal cycling.
A lot of data centers are limited by the energy infrastructure where they are constructed.
Superconductors can be used as very fast charging energy storage devices. Think a capacitor but with better energy storage than a battery. We could have electric cars that charge as fast as it takes to fill a gas tank and instantly charging electronic devices.
Do we have any theories on the density? Do they "just" fill up faster? Or can they be denser? We have lots of cool tech now that is limited imo by the fact that Gasoline is just so damn dense and our best batteries don't come close.
Gasoline is at 47.5 MJ/kg ^fn1 and LiOn is at 0.36-0.954 Mj/kg^fn2
Looks like as of 2016 a theorized coil superconducting battery has about 2 Mj/m^3^ while Gasoline is 30 Gj/m^3^^fn1
:(
Eager to see what other novel ways we can use this material though. If it is cheap and easy to make surely new ideas will be flowing fast.
I thought heat is the main thing limiting computer performance? Like, if we had superconducting transistors that take little energy to change state, highly parallel tasks that are power-limited today would get a whole lot faster. Think native 4k path tracing-level graphics in games on our phones. And better/faster/cheaper AI systems, though they are limited more by memory than by compute, so they'd likely still be run in the cloud mostly.
Heat is a big issue, but we are close to the physical limits of transistor size, they are nearly the size of atoms AFAIK. So this will allow us to have more of them closer I guess with no heat limits. There is also a lot of stuff that goes above my head about quantum tunneling when our transistors get that size. But transistors use semiconductors (Sillicon) not conductors, so this isn't a drop in replacement. Will require a new type of transistor that uses a conductor I suppose.