269
JPEG XL: How It Started, How It’s Going
(cloudinary.com)
This is a most excellent place for technology news and articles.
JXL has been ready for practical use for a while now - the only place where JXL support is still missing is browsers (due to Google's politically-motivated removal from chromium). I'm not sure if anyone has tried using JXL with ML, but it's certainly ready to be tested right now. IMO JXL has been ready since their libJXL 0.7.0 release, which happened September 2022 last year. They're still working towards a 1.0 but every image-related application has built-in support for JXL already and it can more or less be considered ready.
Just to note here, to be precise AVIF starts (barely) winning at low fidelity ranges, not low resolution. Meaning if you want a blurry mess that looks like this, AVIF will compress slightly better (that's an actual AVIF converted to PNG by the way).
At the risk of sounding like sour grapes, this compression advantage doesn't truly matter. This level of compression is almost never used, and even if it was, even drastic relative filesize savings would ultimately amount to bytes/kilobytes in the grand scheme of all images you're serving. It's more impactful to compress large images simply because they are larger. Smaller images are already small and efficiency deltas in a 1kB vs 1.1kB image are meaningless compared to a 600kB vs 800kB image.
I'm not fully confident on this aspect but I'm pretty sure that JXL supports more than just traditional progressive decoding - you can actually pull "complete" images out of the bitstream from arbitrary ranges. Meaning you could efficiently store a full range of quality options in just one image, then serve them on the fly.
JXL is self-described "alien technology from the future", and it was made by a "dream team" of image engineers who have had a hand in just about every image codec and compression technique from our past. It also benefits from being a real image codec, whereas every recent image format that has gained widespread adoption has been derived from a video codec (WebP, AVIF, HEIC).
The only truly useful thing it doesn't perform best-in-class at is animation encoding (losing to AVIF because it's based on the amazing AV1 video codec), and I would honestly recommend just serving AV1 videos instead, and skipping image formats entirely.
A neutral aspect of JXL is that it does worse in single-core decode speed compared to JPEG (which is disgustingly fast), but JXL can be parallelized whereas JPEG cannot. This is ultimately an advantage for JXL for general usecase where users have at least 4 cores available, but for large-scale distributed processing I imagine this property of JPEG may still have an edge use-case?
If you're curious about the technical aspects of JXL, I recommend reading their official slidedeck. The nitty-gritty details start at page 59, but the whole thing is a good read.
At first glance, I probably thought JXL was another attempt at JPEG2000 by a few bitter devs, so I had ignored it.
Yeah, my examples/description was more intended to be conceptual for folks that may not have dealt with the nitty gritty. Just mental exercises. I've only done a small bit of image analysis, so I have a general understanding of what's possible, but I'm sure there are folks here (like you) that can waaay outclass me on details.
These intermediate-to-deep dives are very interesting. Not usually my cup of tea, but this does seem big. Thanks for the info.