Some of them are broken by quantum computers, but not all of them. For example, SHA256. You can use Grover's algorithm to take sqrt(n) steps to check n possible passwords, which on the one hand means it can be billions of times faster, but on the other hand, you just need to double the length of the password to get the same security vs quantum computers. Also, this is the first I've heard of a hash that uses a quantum computer. Do you have a source? Hashes need to be deterministic, and quantum computers aren't, so that doesn't seem like it would work very well.
Maybe you're getting mixed up with using quantum encryption to get around quantum computers breaking common encryption algorithms?
Some of them are broken by quantum computers, but not all of them. For example, SHA256. You can use Grover's algorithm to take sqrt(n) steps to check n possible passwords, which on the one hand means it can be billions of times faster, but on the other hand, you just need to double the length of the password to get the same security vs quantum computers. Also, this is the first I've heard of a hash that uses a quantum computer. Do you have a source? Hashes need to be deterministic, and quantum computers aren't, so that doesn't seem like it would work very well.
Maybe you're getting mixed up with using quantum encryption to get around quantum computers breaking common encryption algorithms?