this post was submitted on 07 Feb 2026
131 points (99.2% liked)

Selfhosted

56127 readers
1503 users here now

A place to share alternatives to popular online services that can be self-hosted without giving up privacy or locking you into a service you don't control.

Rules:

  1. Be civil: we're here to support and learn from one another. Insults won't be tolerated. Flame wars are frowned upon.

  2. No spam posting.

  3. Posts have to be centered around self-hosting. There are other communities for discussing hardware or home computing. If it's not obvious why your post topic revolves around selfhosting, please include details to make it clear.

  4. Don't duplicate the full text of your blog or github here. Just post the link for folks to click.

  5. Submission headline should match the article title (don’t cherry-pick information from the title to fit your agenda).

  6. No trolling.

  7. No low-effort posts. This is subjective and will largely be determined by the community member reports.

Resources:

Any issues on the community? Report it using the report flag.

Questions? DM the mods!

founded 2 years ago
MODERATORS
 

cross-posted from: https://beehaw.org/post/24650125

Because nothing says "fun" quite like having to restore a RAID that just saw 140TB fail.

Western Digital this week outlined its near-term and mid-term plans to increase hard drive capacities to around 60TB and beyond with optimizations that significantly increase HDD performance for the AI and cloud era. In addition, the company outlined its longer-term vision for hard disk drives' evolution that includes a new laser technology for heat-assisted magnetic recording (HAMR), new platters with higher areal density, and HDD assemblies with up to 14 platters. As a result, WD will be able to offer drives beyond 140 TB in the 2030s.

Western Digital plans to volume produce its inaugural commercial hard drives featuring HAMR technology next year, with capacities rising from 40TB (CMR) or 44TB (SMR) in late 2026, with production ramping in 2027. These drives will use the company's proven 11-platter platform with high-density media as well as HAMR heads with edge-emitting lasers that heat iron-platinum alloy (FePt) on top of platters to its Curie temperature — the point at which its magnetic properties change — and reducing its magnetic coercivity before writing data.

you are viewing a single comment's thread
view the rest of the comments
[–] thejml@sh.itjust.works 4 points 12 hours ago (1 children)

Rebuild time is the big problem with this in a RAID Array. The interface is too slow and you risk losing more drives in the array before the rebuild completes.

[–] rtxn@lemmy.world 5 points 12 hours ago* (last edited 12 hours ago) (1 children)

Realistically, is that a factor for a Microsoft-sized company, though? I'd be shocked if they only had a single layer of redundancy. Whatever they store is probably replicated between high-availability hosts and datacenters several times, to the point where losing an entire RAID array (or whatever media redundancy scheme they use) is just a small inconvenience.

[–] thejml@sh.itjust.works 1 points 12 hours ago (1 children)

True, but that's going to really be pushing your network links just to recover. Realistically, something like ZFS or a RAID-6 with extra hot spares would help reduce the risks, but it's still a non trivial amount of time. Not to mention the impact to normal usage during that time period.

[–] frongt@lemmy.zip 3 points 8 hours ago

Network? Nah, the bottleneck is always going to be the drive itself. Storage networks might pass absurd numbers of Gbps, but ideally you'd be resilvering from a drive on the same backplane, and SAS-4 tops out at 24 Gbps, but there's no way you're going to hit that write speed on a single drive. The fastest retail drives don't do more than ~2 Gbps. Even the Seagate Mach.2 only does around twice that due to having two head actuators.