this post was submitted on 06 Dec 2024
26 points (96.4% liked)
Advent Of Code
920 readers
25 users here now
An unofficial home for the advent of code community on programming.dev!
Advent of Code is an annual Advent calendar of small programming puzzles for a variety of skill sets and skill levels that can be solved in any programming language you like.
AoC 2024
Solution Threads
M | T | W | T | F | S | S |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 |
Rules/Guidelines
- Follow the programming.dev instance rules
- Keep all content related to advent of code in some way
- If what youre posting relates to a day, put in brackets the year and then day number in front of the post title (e.g. [2024 Day 10])
- When an event is running, keep solutions in the solution megathread to avoid the community getting spammed with posts
Relevant Communities
Relevant Links
Credits
Icon base by Lorc under CC BY 3.0 with modifications to add a gradient
console.log('Hello World')
founded 1 year ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
I'm not proud of it.
I have a conjecture though, that any looping solution, obtained by adding one obstacle, would eventually lead to a rectangular loop. That may lead to a non brute-force solution. It's quite hard to prove rigorously though. (Maybe proving, that the loop has to be convex, which is an equivalent statement here, is easier? You can also find matrix representations of the guard's state changes, if that helps.)
Maybe some of the more mathematically inclined people here can try proving or disproving that.
Anyways, here is my current solution in Kotlin:
I also have a repo.